Here the Bivariate Survival analysis and Shared Frailty model are presented, Correlated Frailty is considered as well as the bivariate censoring and truncation problem are derived.

## 2. BIVARIATE SURVIVAL FUNCTION AND THE FRAILTY MODELS

Let  $T_1, T_2$  be dependent lifespans and  $S_i(x_i) = P(T_i > x_i), i = 1, 2$  be absolutely continuous univariate survival functions and let  $S(x_1, x_2) = P(T_1 > x_1, T_2 > x_2)$  be a

bivariate survival functions.

The function that is most often usedu demographics and survival analysis is the hazard function

$$\mu_i(x) = \lim_{\Delta \to 0} \frac{P(x_i < X_i < x_i + \Delta \mid X_i > x_i)}{\Delta} = \frac{f(x_i)}{1 - F(x_i)}, i = 1, 2,$$

where  $f(x_i)$  and  $F(x_i)$  are the probability density function and the cumulative density function of the lifespan  $T_i$ , i = 1, 2.

There are two conditional hazards related to  $S(x_1, x_2)$ . The first,  $\bar{\mu}_i(x_i, x_j)$ , represents the hazard of failure for  $T_i$  given  $T_j > x_j$ ,  $i = 1, 2, i \neq j$ , and is defined as

$$\bar{\mu}_i(x_i, x_j) = \lim_{\Delta \to 0} \frac{1}{\Delta} P(x_i \le T_i < x_i + \Delta \mid T_i > x_i, T_j > x_j) =$$

$$= -\frac{\partial}{\partial x_i} ln S(x_i, x_j).$$

The second one,  $\tilde{\mu}_i(x_i; x_j)$ , represents the hazard of failure at a moment  $T_i$  given  $T_j = x_j$ :

$$\tilde{\mu}_i(x_i, x_j) = \lim_{\Delta \to 0} \frac{1}{\Delta} P(x_i \le T_i < x_i + \Delta \mid T_i > x_i, T_j = x_j) =$$

$$= -\frac{\partial}{\partial x_i} ln(\frac{\partial}{\partial x_j} S(x_i, x_j)).$$

One way of deriving a bivariate survival model is based on the introduction of a relation between these hazards (Yashin and Iachine, 1999). For example, the condition

$$\bar{\mu}_i(x_i, x_j) = (1 - \theta)\tilde{\mu}_i(x_i, x_j)$$

defines a bivariate survival function

$$S(x_1, x_2) = (S_1(x_1)^{-\theta} + S_2(x_2)^{-\theta} - 1)^{-\frac{1}{\theta}}.$$